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We study a generalization of the classical notions of bordered and unbordered words,
motivated by biomolecular computing. DNA strands can be viewed as finite strings
over the alphabet {A, G, C, T}, and are used in biomolecular computing to encode
information. Due to the fact that A is Watson–Crick complementary to T and G to C,
DNA single strands that are Watson–Crick complementary can bind to each other or to
themselves forming so-called secondary structures. Most of these secondary structures
are undesirable for biomolecular computational purposes since the strands they involve
cannot further interact with other strands. This paper studies pseudoknot-bordered words,
a mathematical formalization of pseudoknot-like inter- and intra-molecular structures. In
this context, pseudoknot-unbordered words model DNA or RNA strands that will be free
of such secondary structures. We obtain several properties of pseudoknot-bordered and
-unbordered words. We also address following problem: Given a pseudoknot-unbordered
word u, does {u}+ consist of pseudoknot-unbordered words only? We show that this is
not generally true. We find that a sufficient condition for {u}+ to consist of pseudoknot-
unbordered words only is that u be not primitive. All of our results hold for arbitrary
antimorphic involutions, of which the DNA Watson–Crick complementarity function is
a particular case.

Crown Copyright © 2008 Published by Elsevier Inc. All rights reserved.

1. Introduction

In this paper we study pseudoknot-bordered and pseudoknot-unbordered words, which are generalizations of the clas-
sical notions of bordered and unbordered words, motivated by the need of optimally encoding information as DNA strands
for biomolecular computing purposes.

A DNA single strand is a linear chain made up of four different types of nucleotides, each consisting of a sugar-phosphate
unit and a base (Adenine, Cytosine, Guanine or Thymine). The sugar-phosphate units are linked together by strong covalent
bonds, to form the backbone of the DNA strand. Since nucleotides may differ only by their bases, a DNA single strand can be
viewed as a string over the DNA alphabet of bases {A,C,G,T}. A DNA single strand has an orientation, with one end known
as the 3’ end, and the other known as the 5’ end, based on their chemical properties. By convention, a word over the DNA
alphabet represents a DNA single strand in its 5’ to 3’ orientation. An essential biochemical property of DNA single strands
is that of Watson–Crick complementarity, wherein A can bind to T, and C can bind to G by weak hydrogen bonds. (In the
case of RNA, T is replaced by U, and U is complementary to A, though the binding U–G may also occur.) Two Watson–
Crick complementary DNA single strands of opposite orientation can bind to each other to form a DNA double strand. This
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Fig. 1. Inter- and intra-molecular structures which θ -unbordered words avoid.

Fig. 2. Left: A pseudoknot found in E. Coli transfer-messenger-RNA. (From Rfam [6].) Right: A depiction of a string modeling the pseudoknot in Left, as a word
v1xv2 yv3θ(x)v4θ(y)v5. Here, v1 = UGC, x = CGAGG, v2 = G, y = GCGGUU, v3 = GG, v4 = UAAAAA, and v5 = AAAAAA.

and other biochemical properties of DNA have all been harnessed in biomolecular computing [1], in which information is
encoded as DNA single strands, and processed through bio-operations [4].

One of the problems encountered when encoding information as DNA single strands is that the Watson–Crick comple-
mentarity often results in information-encoding DNA single strands either folding onto themselves to form intra-molecular
structures, or interacting with each other to form inter-molecular structures. While these so-called secondary structures
optimize biochemical determinants such as the Gibbs free-energy [17] and often have a significant role in determining the
biochemical functions of real-life nucleic acids (DNA or RNA), in DNA computing they are often seen as a disadvantage.
This is because it is very likely that the secondary structure formation of DNA strands will prevent them from interacting
with other DNA strands in the expected, pre-programmed ways. Consequently, the property of a set of information-encoding
strands to be free of unwanted intra- and inter-molecular structures has been intensively studied from many different points
of view. These include design of algorithms based on free energy [2,3,14], algebra [13], and formal language theory [8–11].

In this context, the notion of antimorphic involution θ was proposed, as the most natural mathematical formalization
of the notion of DNA Watson–Crick complementarity [7,9,12]. Using this notion, Kari and Mahalingam [11] introduced and
investigated the concept of a θ -unbordered word, as a formalization of DNA strands that avoid some of the most common
inter- and intra-molecular structures. A θ -bordered word is a nonempty word which has a nonempty prefix x, and a suffix
θ(x). If the alphabet under consideration is the DNA alphabet, and θ is the Watson–Crick complementarity function, then a
θ -unbordered word represents a population of identical DNA single strands that are free from both inter-molecular struc-
tures such as the ones shown in Fig. 1 (left), and hairpins (words of the form xγ θ(x), shown in Fig. 1 (right)), one of the
most common DNA intra-molecular structures. In addition to being relevant for DNA computing, the notions of θ -bordered
and θ -unbordered words are generalizations of classical notions in combinatorics of words, namely those of bordered [5]
(a.k.a. overlapping [20,23], unipolar [21] words), respectively unbordered words (a.k.a. d-primitive, dipolar words).

The pseudoknot is another intra-molecular structure of biological significance, formed primarily by RNA strands. A pseu-
doknot found in E. Coli transfer-messenger-RNA is shown in Fig. 2 (left). This type of pseudoknot, which is the simplest and
hence the most common, can be modeled as a word of the form v1xv2 yv3θ(x)v4θ(y)v5, as shown in Fig. 2 (right).

In this paper, we investigate not only such θ -pseudoknot-bordered words, but θ -pseudoknot-unbordered words, the latter
being models of DNA or RNA strands that will not form pseudoknot-like inter- and intra-molecular structures. A nonempty
word w is θ -pseudoknot-bordered if w = xyα = βθ(yx) for some words x, y, α, and β . Thus, θ -pseudoknot-unbordered
words avoid both inter-molecular bonds between identical strands of the type depicted in Fig. 3 (left), and intra-molecular
structures of the form xyγ θ(x)θ(y) shown in Fig. 3 (right). Note that this is a particular case of the general model of
pseudoknots, namely the case where v1 = v2 = v4 = v5 = λ.

The paper is organized as follows. Using the notations and terminology given in Section 2, we propose the notion of
θ -pseudoknot-bordered words in Section 3 and present some of their basic properties. We also show that the notion of
θ -pseudoknot-bordered word is a proper generalization of that of θ -bordered word, and thus also properly generalizes the
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Fig. 3. An inter-molecular structure and intra-molecular structure which θ -pseudoknot-unbordered words avoid.

classical notion of bordered word. Since information-encoding DNA single strands often need to be concatenated together
in the course of biocomputations, another problem of interest, which we address in Section 4, is whether the property
of being pseudoknot-unbordered is preserved by catenation. Here we address the simplest case of this problem: Given
a pseudoknot-unbordered word u, are all the words in {u+} still pseudoknot-unbordered? This turns out not to be always
the case. However, we find a sufficient condition for a θ -pseudoknot-unbordered word u to satisfy the property that any
power of u remains θ -pseudoknot-unbordered: the condition is that u be nonprimitive (Corollary 21). Section 5 discusses
possible further directions of research.

2. Preliminaries

In this section we introduce the terminology and notations used in the paper. For details, we refer the reader to
[19,20,23].

Let Σ be a finite alphabet. We denote by Σ∗ the set of all words over Σ , and by Σ+ the set of all nonempty words
over Σ . Let λ be the empty word. Then Σ+ = Σ∗ \ {λ}. For a word w ∈ Σ∗ , |w| denotes the length of w . A word u is said
to be a prefix (suffix) of w if w = uv (resp. w = vu) for some v ∈ Σ∗; here if v �= λ, then the prefix (suffix) u is said to be
proper. Let Pref(w) (Suff(w)) be the set of all prefixes (resp. suffixes) of w .

A word z ∈ Σ∗ is said to be a border of a word w ∈ Σ∗ if w = uz = zv for some words u and v in Σ∗ . A nonempty word
is said to be bordered if it admits a nonempty border, and it is said to be unbordered otherwise. A word w ∈ Σ+ is called
primitive if it cannot be written as a power of another word, i.e., w = un with u ∈ Σ+ implies n = 1. For a word w ∈ Σ+ ,
the shortest u ∈ Σ+ satisfying w = un for some n � 1 is called the primitive root of w . It is well known [15] that every
nonempty word has a unique primitive root. Moreover, we have the following result due to Lyndon and Schützenberger.

Theorem 1. For u, v ∈ Σ+ , uv = vu implies that u and v have the same primitive root.

For a word w ∈ Σ∗ , a word v ∈ Σ∗ is called a cyclic permutation of w if there exist two words x, y ∈ Σ∗ such that
w = xy and v = yx. We denote the set of all cyclic permutations of w by Cp(w), that is, Cp(w) := {yx | w = xy, x, y ∈ Σ∗}.
Moreover, for a language L ⊆ Σ∗ , we define Cp(L) := ⋃

w∈L Cp(w).
An involution θ :Σ → Σ of a set Σ is a function such that θ2 equals the identity function, i.e., θ(θ(a)) = a for all a ∈ Σ .

A morphism (antimorphism) θ on Σ∗ is a function such that θ(xy) = θ(x)θ(y) (resp. θ(xy) = θ(y)θ(x)) for all x, y ∈ Σ∗ .
A d-morphism is a generic term that refers to a function that is either a morphism or an antimorphism. An involution θ

can be extended to a function θ : 2Σ∗ → 2Σ∗
, for a given language L ⊆ Σ∗ , as follows: θ(L) := {θ(w) | w ∈ L}. In order

to prove that the notion of θ -pseudoknot-bordered word is a proper generalization of the notion of a bordered word, in
Section 3 we consider both morphic and antimorphic involutions. However, the problem of investigating whether catenations
of pseudoknot-unbordered words have the same property is motivated mainly by DNA/RNA computing. Thus, in Section 4
we focus only on the mathematical formalization of the Watson–Crick complementarity, i.e., we consider only the case of
antimorphic involutions.

A few words about morphic and antimorphic involutions are in order. Note that, if the alphabet Σ has m letters, and if
we regard involutions that are isomorphic to each other as identical, the number of different involutions on Σ∗ is �m/2�+1.
For example, on a binary alphabet Σ = {a,b}, there exist only two essentially different involutions: θ defined as θ(a) := b
and θ(b) := a, and the identity function. Each of these �m/2� + 1 involutions can be extended to a morphic or antimorphic
involution. With applications to the Watson–Crick complementarity in mind, herein we deal only with functions that are not
the identity function. Thus, implicitly, we also exclude singleton alphabet sets. Note also that for any d-morphic involution θ

that is not the identity, there exist two distinct characters a,b ∈ Σ such that θ(a) = b and θ(b) = a. We assume that in all
the examples of this paper, for a given nonidentity d-morphic involution θ , such a,b ∈ Σ are chosen.

3. θ -pseudoknot-bordered words

In this section we propose the notion of θ -pseudoknot-bordered words for a morphic or antimorphic involution θ . If
we consider the DNA alphabet {A, C, G, T }, wherein θ is the Watson–Crick complementarity function, then a word that
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is θ -pseudoknot-unbordered will not form pseudoknot-like secondary structures such as the ones in Fig. 3. We show that
the notion of θ -pseudoknot-bordered word is a proper generalization of the notion of θ -bordered word proposed in [11],
and thus a proper generalization of the notion of bordered word. We also provide several properties of θ -pseudoknot-
(un)bordered words.

Let θ be a d-morphic involution. A word u ∈ Σ∗ is said to be a proper θ -border of a word w ∈ Σ+ if u is a proper
prefix of w and θ(u) is a proper suffix of w , i.e., w = uα = βθ(u) for some α,β ∈ Σ+ . Lθ

d(w) denotes the set of all proper
θ -borders of a nonempty word w . Note that λ ∈ Lθ

d(w) for all w ∈ Σ+ . A word w ∈ Σ+ is said to be θ -bordered if it has
a proper θ -border other than λ, i.e., |Lθ

d(w)| � 2; otherwise, it is θ -unbordered. Define now Dθ (i) := {w ∈ Σ+ | |Lθ
d(w)| = i}.

Then Dθ (1) is the set of all θ -unbordered words.
We call a word u ∈ Σ∗ a θ -pseudoknot-border (or θ -pk-border) of a word w ∈ Σ∗ if there exists a cyclic permutation v

of u such that w = uα = βθ(v) for some α,β ∈ Σ∗ . We also employ the expression “xy is a θ -pk-border of w” to mean
“v is a θ -pk-border of w such that v = xy and w = xyα = βθ(yx) for some α,β ∈ Σ∗ .” Let Lθ

cd(w) denote the set of all
θ -pk-borders of a nonempty word w , and Kθ (i) := {w ∈ Σ+ | |Lθ

cd(w)| = i}. We call a nonempty word θ -pseudoknot-bordered
(or θ -pk-bordered) if it has a nonempty θ -pk-border; otherwise, it is θ -pseudoknot-unbordered. Note that λ ∈ Lθ

cd(w) for all
w ∈ Σ+ . Note also that no word in Kθ (1) has θ -pk-borders other than λ, and hence Kθ (1) is the set of all θ -pk-unbordered
words.

Example 2. Let θ be an antimorphic involution on Σ∗ and w = aababbb. As mentioned in Section 2, a,b ∈ Σ are chosen
so as to satisfy θ(a) = b and θ(b) = a. Then Lθ

cd(w) = {λ,a,aa,aaba}. In particular, setting x = aab and y = a shows that
w = xybbb = aabθ(yx) and hence aaba ∈ Lθ

cd(w). Note that w ∈ Kθ (4).

A word may have itself as its θ -pk-border, in both cases of θ being morphic and being antimorphic, as shown by the
following examples.

Example 3. Let θ be a morphic involution on Σ∗ and w = abbaabba. Then w can be written as w = xy = θ(yx) by letting
x = abbaab and y = ba.

Example 4. Let θ be an antimorphic involution on Σ∗ and w = ababbbaa. Then w = xy = θ(yx) by letting x = abab and
y = bbaa.

Observe that the definitions of Lθ
d(w) and Lθ

cd(w) are different in that the former does not contain w while the latter
can, if w is a θ -pk-border of itself. This scenario is different also from the classical case of bordered words, a particular case
of θ -pk-bordered words where θ , as well as the permutation involved, are the identity. In the classical case, Ld(w) denotes
the set of proper borders of w , i.e., it does not contain w , since w is trivially always a border of itself. This definition was
followed closely when defining Lθ

d(w), the set of proper θ -borders of a word w . However, in the case of θ -pseudoknot-
bordered words we strayed from this model in defining Lθ

cd(w). This was because a word may, or may not, be a θ -pk-border
of itself, and thus it is meaningful to observe for a word w , whether or not w belongs to Lθ

cd(w). This choice implies
that, while all other notions proposed here are strict generalizations of the corresponding notions related to θ -bordered
and bordered words, Lθ

cd(w) does not strictly generalize Lθ
d(w) and Ld(w). Observe, however, that all the results obtained

in this paper hold for the other definition choice for Lθ
cd(w) as well, either unchanged or augmented by a weak additional

condition.
Since a word is a cyclic permutation of itself, if a word has a θ -border, then the θ -border also becomes a θ -pk-border of

the word. Hence, the following lemma and its corollary hold.

Lemma 5. Let θ be a d-morphic involution on Σ∗ and w ∈ Σ+ . Then Lθ
d(w) ⊆ Lθ

cd(w) holds.

Corollary 6. Let θ be a d-morphic involution on Σ∗ . Then Kθ (1) ⊆ Dθ (1).

As shown in the following example, there exist a word w and a d-morphic involution θ for which Lθ
d(w) is strictly

included in Lθ
cd(w).

Example 7. Let θ be a d-morphic involution on Σ∗ and w = aababbb. For both cases of θ being morphic or antimorphic,
Lθ

d(w) = {λ,a,aa} but Lθ
cd(w) = {λ,a,aa,aaba}.

In the preceding example, Lθ
cd(w) happens to be the same whether the involution defined as θ(a) = b and vice versa

is extended to a morphism, or to an antimorphism of Σ∗ . This is not always the case, as indicated in the following two
examples.
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Example 8. Let θ be a d-morphic involution on Σ∗ and w = aabbabaababb. When θ is morphic, w = xyaababb =
aabbabθ(yx) for x = aa and y = bbab, and hence aabbab ∈ Lθ

cd(w). On the other hand, aabbab /∈ Lθ
cd(w) if θ is antimor-

phic.

Example 9. Let θ be a d-morphic involution on Σ∗ and w ′ = aabbabbbabaa. When θ is antimorphic, w = xybbabaa =
aabbabθ(yx) for x = aa and y = bbab, and hence aabbab ∈ Lθ

cd(w ′). On the other hand, aabbab /∈ Lθ
cd(w ′) for θ being morphic.

There exist alphabets Σ , and d-morphic involutions θ on Σ∗ , for which the inclusion relation of Corollary 6 is proper.
Indeed, let us consider a morphic involution θ , and a word w ∈ Dθ (1) such that w /∈ Kθ (1). This implies that w = xyα =
βθ(y)θ(x) for some x, y,α,β ∈ Σ∗ . If x were a proper prefix of w , then w would be θ -bordered, and hence w = x = θ(x).
Hence, if there exists c ∈ Σ such that θ(c) = c, a word w ∈ Dθ (1) \ Kθ (1) exists, and the inclusion relation is proper as seen
by choosing w = c; otherwise Dθ (1) = Kθ (1). For an antimorphic involution θ , we have the following example.

Example 10. Let θ be an antimorphic involution on Σ∗ and w = aba. Then w ∈ Dθ (1), but w /∈ Kθ (1) because w = xya =
aθ(yx) for x = a and y = b.

For a given d-morphic involution θ on Σ∗ , a few remarks are in order regarding the set of all θ -pseudoknot-bordered
words over Σ , i.e., the complement of Kθ (1). For an antimorphic involution, which is of the most interest because of the
biological motivation of this study, the cross-dependency existing in any θ -pk-bordered word indicates that the set of all θ -
pk-bordered words is not context-free. This can indeed be proved by using the Pumping Lemma for context-free languages
by choosing, e.g., an alphabet Σ , an antimorphic involution θ that maps a to b and vice versa, and the θ -pk-bordered
word anbnan , where n is the constant given by the Pumping Lemma. The fact that several (mild-)context-sensitive grammars
or their stochastic variants were proposed to model pseudoknot structures [16,18,22] suggests that, for an antimorphic
involution θ , the set of all θ -pk-bordered words over Σ is context-sensitive. This is indeed true, but we omit here the
lengthy but straightforward construction of such a context-sensitive grammar, and the proof.

We conclude this section with some basic properties of θ -pk-borders, which will be used mainly in the proofs of the
next section.

Lemma 11. Let θ be a d-morphic involution on Σ∗ . The following hold:

(1) If a word w ∈ Σ+ has a θ -pk-border of length n, then, for every a ∈ Σ , the number of occurrences of the letter a in the prefix of
length n of w is equal to the number of occurrences of the letter θ(a) in the suffix of length n of w.

(2) For all a ∈ Σ such that a �= θ(a), ak is θ -pk-unbordered for all k � 1.
(3) For words v, w ∈ Σ+ and n � 1, if v ∈ Lθ

cd(wn) and |wm−1| < |v| � |wm| for some m � 1, then v ∈ Lθ
cd(wk) for all k with

m � k � n.

4. Primitive and θ -pseudoknot-unbordered words

One of the processes that are essential and often unavoidable in biocomputing algorithms is the concatenation of
information-encoding DNA single strands. Thus, a question that is often asked is: Given some DNA strands having a cer-
tain “good” encoding property, will the catenation of these strands preserve this property? In this section we make steps
towards answering this question in the case of the property of a word being θ -pseudoknot-unbordered. That is, for an an-
timorphic involution θ , we first address the following question: “Given a θ -pk-unbordered word u, is every word in {u}+
also θ -pk-unbordered?” This question was answered positively for θ -unbordered words in [11]: A power of a θ -unbordered
word is always θ -unbordered. We show that, in contrast, the question is answered negatively for θ -pk-unbordered words.
Moreover, we provide a sufficient condition for a θ -pk-unbordered word to satisfy the condition that all of its powers are
θ -pk-unbordered (Corollary 21).

We begin by providing a necessary and sufficient condition for a word to be θ -pk-unbordered, which follows directly
from the definition of a θ -pk-bordered word.

Lemma 12. Let θ be an antimorphic involution on Σ∗ . Then a word u ∈ Σ+ is θ -pk-unbordered if and only if θ(Cp(Pref(u))) ∩
Suff(u) = ∅.

For a d-morphic involution θ on Σ∗ , a word w ∈ Σ∗ is called θ -palindrome if w = θ(w). Let Pθ denote the set of all
θ -palindromes over Σ .

Lemma 13. Let θ be an antimorphic involution on Σ∗ , and x, y be θ -palindromes such that xy �= λ. If a word u ∈ Σ+ has xy as both
its prefix and suffix, then u is θ -pk-bordered.
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Fig. 4. A pictorial representation of case 2 of the proof of Proposition 16.

Proof. Let u = xyα = βxy for some α,β ∈ Σ∗ . The fact that x, y ∈ Pθ implies that u = βθ(x)θ(y) = βθ(yx), Therefore, u is
θ -pk-bordered. �

Recall the following result from [11].

Lemma 14. Let θ be an antimorphism on Σ∗ and let u ∈ Σ+ . Then u ∈ Dθ (1) if and only if u+ ⊆ Dθ (1).

In contrast, the following example shows that there exist θ -pk-unbordered words u such that at uk is θ -pk-bordered for
some k � 2.

Example 15. Let θ be an antimorphic involution on Σ∗ and u = aabbbbaba. Although u is θ -pk-unbordered, u2 is θ -pk-
bordered. In fact, u2 = xyabbbbaba = aabbbbabθ(x)θ(y) for x = aabbb and y = babaa.

In the following, we give a characterization of θ -pk-unbordered words u with the property that uk is θ -pk-bordered for
some k � 2, that takes into account the relative length of the θ -pk-borders of u2.

Proposition 16. Let θ be an antimorphic involution on Σ∗ . Then for a θ -pk-unbordered word u, if there exists k � 2 such that uk has
a nonempty θ -pk-border w, then |u| < |w| < 4

3 |u| holds.

Proof. Suppose for some k � 2, there were a w ∈ Lθ
cd(uk) such that either |w| � |u| or 4

3 |u| � |w| hold. If |w| � |u|, then

this w leads us to a contradiction immediately. Next we consider the case 4
3 |u| � |w| < 2|u|. Then w ∈ Lθ

cd(uk) implies
w ∈ Lθ

cd(u2). In other words, there exists a decomposition w = xy such that uu = xyα = βθ(x)θ(y) for some α,β ∈ Σ+ .

Since |w| � 4
3 |u|, we have xy = uup and θ(x)θ(y) = usu, where up ∈ Pref(u), and us ∈ Suff(u). Now we have the following

two cases:

(1) |x| � |u| or |y| � |u| holds,
(2) |x| < |u| and |y| < |u| hold.

In the first case, for reasons of symmetry, we only have to consider the case |x| � |u|. Since θ(x)θ(y) = usu, we can write
θ(x) = usu′

p for some u′
p ∈ Pref(u). Let u = u′

pu′
s , and we can easily check that u′

s ∈ Suff(us). Therefore, u′
su′

p ∈ Suff(θ(x)),
which equals θ(u′

p)θ(u′
s) ∈ Pref(x). This means that θ(u′

p)θ(u′
s) = u because u and θ(u′

p)θ(u′
s) are prefixes of x and they

have equal lengths. Since u = u′
pu′

s , we conclude that both u′
p and u′

s are θ -palindromes. The application of Lemmata 12
and 13 leads now to a contradiction.

Next we consider the second case (see Fig. 4). This figure shows xy = uup and θ(x)θ(y) = usu. Since both x and y are
shorter than u, these equations imply that u = xu′

s = u′
pθ(y), where u′

p ∈ Pref(u) and u′
s ∈ Suff(u). Comparing this equation

with xy = uup we derive y = u′
sup , and hence u = u′

pθ(up)θ(u′
s). This result, together with u = xu′

s , implies that u′
s is a θ -

palindrome and x = u′
pθ(up). Substituting this x and u = u′

pθ(y) into θ(x)θ(y) = usu gives upθ(u′
p)θ(y) = usu′

pθ(y), which
means that up = us and u′

p is a θ -palindrome.

Let us bring now into the picture the original condition 4
3 |u| � |w| < 2|u|. Since |w| = |u| + |up|, 4

3 |u| � |w| means
1
3 |u| � |up|. Hence, |xy| = |uup| � 4|up |. This implies that either |x| � 2|up| or |y| � 2|up| holds. We assume the former
case holds. Then θ(x) = usu′

p implies |u′
p| � |us| because |θ(x)| = |x| � 2|up | = 2|us|. Let us = u1u2 such that |u1| = |u′

p|.
Note that us ∈ Pref(x) because up, x ∈ Pref(u), |us| < |x|, and up = us . Comparing us = u1u2 with x = θ(u1u2u′

p) based on
us ∈ Pref(x) results in u2 = θ(u2) and u1 = θ(u′

p), which in turn implies u1 = θ(u1) because u′
p = θ(u′

p). Now Lemmata 12
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and 13 lead to a contradiction because u contains the concatenation of two θ -palindromes u1 and u2 as its prefix up and
suffix us .

What remains to consider is the case where |w| � 2|u|. Let w = xy = unup and θ(x)θ(y) = usun for some n � 2,
up ∈ Pref(u), and us ∈ Suff(u). Then either |x| � |u| or |y| � |u| holds. Let us assume that |x| � |u| holds. Then θ(x) =
usumu′

p and θ(y) = u′
sun−m−1 for some m < n, where u′

pu′
s = u. If u′

s ∈ Suff(us), then u′
sumu′

p ∈ Suff(θ(x)), which im-
plies θ(u′

p)θ(u)mθ(u′
s) ∈ Pref(x). Since x is not shorter than u, u = θ(u′

p)θ(u′
s). Thus, u can be factorized into two θ -

palindromes, a contradiction. If us ∈ Suff(u′
s), then m must be at least 1; otherwise, |θ(x)| = |usu′

p| < |u′
su′

p | = |u|. Therefore,
u′

su′
p ∈ Suff(θ(x)), i.e., θ(u′

p)θ(u′
s) ∈ Pref(x). Now we have u = θ(u′

p)θ(u′
s), and this leads to the same contradiction as

above. �
Note that, in Example 15, the θ -pk-border xy of u2 satisfies |u| < |xy| < 4

3 |u|.

Corollary 17. Let θ be an antimorphic involution on Σ∗ . For a word u ∈ Kθ (1), u+ � Kθ (1) if and only if u2 /∈ Kθ (1).

The next lemma is a consequence of the proof of Proposition 16, and will be a useful tool in obtaining several additional
properties of θ -pk-unbordered words whose square is θ -pk-bordered.

Lemma 18. Let θ be an antimorphic involution on Σ∗ , and u be a θ -pk-unbordered word. If xy ∈ Lθ
cd(u2) such that xy = uup for some

up ∈ Pref(u), then 2|up| < |x| < |u| and 2|up| < |y| < |u| hold.

In what follows, we give a characterization of θ -pk-unbordered words whose square is θ -pk-bordered.

Lemma 19. Let θ be an antimorphic involution on Σ∗ , and u be a θ -pk-unbordered word. Then u2 is θ -pk-bordered if and only if
u = upαθ(up)βup for some up,α,β ∈ Σ+ such that upα, βup are θ -palindromes.

Proof. (Only if) Let u2 = xyγ1 = γ2θ(x)θ(y) for xy such that |u| < |xy| < 4
3 |u|. Then xy = uup and θ(x)θ(y) = usu for some

up ∈ Pref(u) and us ∈ Suff(u), which satisfy |up| = |us| < 1
3 |u|. In addition, Lemma 18 enables us to assume that 2|up| <

|x| < |u| and 2|up| < |y| < |u|. Now we have θ(x) = usupα and y = βusup for some α,β ∈ Σ+ . Then x = θ(upα)θ(us) and
θ(y) = θ(up)θ(βus). Substituting these into xy = uup and θ(x)θ(y) = usu gives that u = θ(upα)θ(us)βus = upαθ(up)θ(βus).
This means that both upα and βus are θ -palindromes and θ(up) = θ(us). Thus, up = us and then u = upαθ(up)βup .

(If) Let x = upαθ(up) and y = βupup . Then θ(x)θ(y) = upθ(upα)θ(up)θ(βup). We can rewrite the right-hand side as
upupαθ(up)βup because upα,βup ∈ Pθ . This means θ(x)θ(y) = upu ∈ Suff(uu). �
Lemma 20. Let θ be an antimorphic involution on Σ∗ , and u be a θ -pk-unbordered word. If u2 is θ -pk-bordered, then u is primitive.

Proof. Since u2 has a θ -pk-border uup for some up ∈ Pref(u), Lemma 19 implies that u can be written as upαθ(up)βup for
some α,β ∈ Σ∗ such that upα,βup ∈ Pθ . Suppose u were not primitive, i.e., u = wr for some w ∈ Σ+ and r � 2. To begin
with, we consider the case |up| � |w|. This case has the two subcases depending on whether there exists an integer n such
that |upα| < |wn| < |upαθ(up)|, where 1 � n � r −1, or not. If such n exists, the infix θ(up) overlaps with the nth occurrence
of w and with the (n + 1)th occurrence of w , counted from the left. Let θ(up) = θ(u2)θ(u1) such that θ(u2) ∈ Suff(w) and
θ(u1) ∈ Pref(w). Then we have up = u1u2. Both up and w are prefixes of u and |up| � |w| so that u1 ∈ Pref(w), and hence
u1 = θ(u1). In the same way, u2 = θ(u2). Then Lemma 13 leads to a contradiction with the fact that u ∈ Kθ (1).

Next we consider the other subcase. We can rewrite this subcase as follows: There exists an integer n such that |wn| �
|upα| and |upαθ(up)| � |wn+1|, where 0 � n � r −1. Depending on the value of n, there exist 3 possibilities to be taken into
account: (a) n = 0, (b) n = r − 1, and (c) otherwise. In case (a), we can write w = upαθ(up)βp , βi = wr−2, and w = βsup

for some βp, βi, βs ∈ Σ∗ such that βpβiβs = β . Then βup = βp wr−1. Replacing one occurrence of w in the right-hand
of this equation with upαθ(up)βp gives βup = βpupαθ(up)βp wr−2 = βp wr−2upαθ(up)βp . This means that both βp and
upαθ(up) are θ -palindromes because βup ∈ Pθ . Therefore, w is the concatenation of two θ -palindromes. Since u has w
as its prefix and suffix, Lemma 13 leads to a contradiction. The case (b) is similar. In case (c), let w = upαp , wn−1 = αi ,
w = αsθ(up)βp , wr−n−2 = βi , and w = βsup for αp,αi,αs, βp, βi, βs ∈ Σ∗ such that αpαiαs = α and βpβiβs = β . Then
one has upα = wnαs . Substituting w = αsθ(up)βp into one occurrence of w in the right-hand side of this equation gives
upα = αsθ(up)βp wn−1αs = wn−1αsθ(up)βpαs . Since upα ∈ Pθ , both αs and θ(up)βp are θ -palindromes. Then Lemma 13
leads to a contradiction as above.

Finally, we consider the case where w is shorter than up . Then there exist two integers n and h satisfying |wn| �
|upα| < |wn+1| and |wn+1+h| < |upαθ(up)| � |wn+1+h+1|, where h � 0. Hence, we can write αsθ(up)βp = wh+2 for some
αs ∈ Suff(α) and βp ∈ Pref(β) such that |αs|, |βp| < |w|. Thus, w = γ βp for some γ ∈ Suff(θ(up)), and hence αsθ(up)βp =
(γ βp)hγ βpγ βp . This equation means βpγ ∈ Suff(θ(up)) because |w| < |θ(up)|. Therefore, θ(βpγ ) = θ(γ )θ(βp) ∈ Pref(up) ⊆
Pref(u). In addition, w = γ βp ∈ Suff(u). Thus, u = θ(γ )θ(βp)vγ βp for some v ∈ Σ∗ , which conflicts with u ∈ Kθ (1). �
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Corollary 21. Let θ be an antimorphic involution on Σ∗ . If u is a nonprimitive θ -pk-unbordered word, then u2 is θ -pk-unbordered.
This further implies that any power of u is θ -pk-unbordered.

Example 22. Let θ be an antimorphic involution on Σ∗ and u = abaaabaa, which is clearly not primitive. It is easy to see
that neither u nor u2 is θ -pk-bordered. Hence, uk is θ -pk-unbordered for any k � 1.

For a θ -pk-unbordered word u whose square is θ -pk-bordered, we now investigate the primitivity of θ -pk-borders of u2.

Theorem 23. Let θ be an antimorphic involution on Σ∗ , and u be a θ -pk-unbordered word whose square is θ -pk-bordered. Then any
θ -pk-border of u2 is primitive.

Proof. Let uup be a θ -pk-border of u2. Lemma 19 says u = upαθ(up)βup for up,α,β ∈ Σ+ such that upα,βup ∈ Pθ .
Suppose uup is not primitive, that is, uup = wr for w ∈ Σ+ and r � 2.

To begin with, we assume |w| = |up|. Then we have u = wr−1. The condition |up| < 1
3 |u|, which is necessary for u+ �

Kθ (1), implies r > 4. Thus, u would be not primitive, a contradiction.
Next we assume |w| > |up|. As in the proof of Lemma 20, we have to consider the following two cases:

(1) There exists an integer n such that |upα| < |wn| < |upαθ(up)|, where 1 � n � r − 1;
(2) There exists an integer n such that |wn| � |upα| and |upαθ(up)| � |wn+1|, where 0 � n � r − 1.

In case 1, let θ(up) = θ(u2)θ(u1) such that θ(u2) ∈ Suff(w) and θ(u1) ∈ Pref(w). Note that w has up as both its prefix
and suffix because wr (= uup) has up both as its prefix and as its suffix, and |up| < |w|. Hence, we have θ(u2) ∈ Suff(up)

and θ(u1) ∈ Pref(up). Since up = u1u2, we also have u1 ∈ Pref(up) and u2 ∈ Suff(up), which means that both u1 and u2
are θ -palindromes. Then Lemma 13 leads to a contradiction to the fact that u ∈ Kθ (1) because u has the product of two
θ -palindromes u1u2 both as its prefix and as its suffix.

In case 2, there are three possibilities depending on the value of n: (a) n = 0, (b) n = r − 1, and (c) otherwise.
In subcase 2(a), we can write w = upαθ(up)βp , wr−3 = βi , βsup = w w p , and w = w pup for some w p ∈ Pref(w)

and βp, βi, βs ∈ Σ∗ such that β = βpβiβs . Now we can rewrite θ(up)βupup = θ(up)βpβiβsupup = θ(up)βpβi w2 =
θ(up)βpβi wupαθ(up)βp . Then we can say that θ(up)βp is a θ -palindrome because θ(up)βupup ∈ Pθ . Therefore, w =
upαθ(up)βp = upαθ(βp)up . Compared to w = w pup , we have w p = upαθ(βp). Then,

w = upαθ(up)βp ∈ Pref(u) ⇒ βpupαθ(up) ∈ Cp
(
Pref(u)

)
,

⇔ βpθ(α)θ(up)θ(up) ∈ Cp
(
Pref(u)

)
,

⇔ upupαθ(βp) ∈ θ
(
Cp

(
Pref(u)

))
,

⇔ up w p ∈ θ
(
Cp

(
Pref(u)

))
.

The third implication is due to the fact that upα ∈ Pθ . Since w2 = w pup w pup is the suffix of uup , up w p ∈ Suff(u), and
hence θ(Cp(Pref(u))) ∩ Suff(u) �= ∅, which is a contradiction.

In subcase 2(b), we can write w = upαp , wr−2 = αi , w p = αsθ(up)βup , and w pup = w for some w p ∈ Pref(w) and
αp,αi,αs ∈ Σ∗ such that α = αpαiαs . As in the cases above, since upα = θ(upα), αs is also a θ -palindrome. Starting from
w ∈ Pref(u), now we can show up w p ∈ θ(Cp(Pref(u))) ∩ Suff(u).

In subcase 2(c), let w = upα1, wn−1 = α2, w = α3θ(up)β1, wr−n−3 = β2, β3up = w w p , and w = w pup for some w p ∈
Pref(w) and αp,αi,αs, βp, βi, βs ∈ Σ∗ such that α = αpαiαs and β = βpβiβs . Using these notations, we have upα = wnαs =
wn−1αsθ(up)βpαs = αsθ(up)βp wn−1αs . Since upα ∈ Pθ , we can observe that both αs and θ(up)βp are also θ -palindromes.
Thus, w = αsθ(up)βp = αsθ(βp)up . Compared to w = w pup , we can say w p = αsθ(βp). Now we can obtain a contradiction
to u ∈ Kθ (1) as above. This completes the discussion of the case |w| > |up| with its two possibilities (1) and (2).

Finally, we consider the case where |w| < |up|. This means that there exist two integers n and h satisfying |wn| �
|upα| < |wn+1| and |wn+1+h| < |upαθ(up)| � |wn+1+h+1|, where h � 0. Hence, we have αsθ(up)βp = wh+2 for some αs ∈
Suff(α) and βp ∈ Pref(β) such that |αs|, |βp| < |w|. Therefore, w = γ βp for some γ ∈ Suff(θ(up)), and hence αsθ(up)βp =
(γ βp)hγ βpγ βp . This implies βpγ ∈ Suff(θ(up)) because |w| < |θ(up)|. This means θ(γ )θ(β1) ∈ Pref(up). Moreover w =
γ βp ∈ Suff(up) because the rightmost occurrence of up in uup = wr has w as its suffix. Thus, u = θ(γ )θ(β1)vγ β1 for some
v ∈ Σ∗ because u has up both as its prefix and as its suffix. This conclusion contradicts u ∈ Kθ (1). �

We conclude this section by showing that, for a word u ∈ Kθ (1), if xy, x′ y′ ∈ Lθ
cd(u2) with |xy| = |x′ y′|, then x = x′ and

y = y′ .

Lemma 24. Let θ be an antimorphic involution on Σ∗ , and w ∈ Σ+ . A θ -pk-border v of w is not primitive if and only if there exist
words x, y, x′ , y′ satisfying v = xy = x′ y′ , yx = y′x′ , and x �= x′ .
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Proof. (Only if) Under the assumption, v = xy = zn for some primitive word z ∈ Σ+ and n � 2. Then x = zi zp and y =
zszn−i−1 for some i � 0, zp, zs ∈ Σ∗ such that z = zp zs . Let x′ = z j zp and y′ = zs zn− j−1 for some j �= i. Since n � 2, such j
exists. Clearly xy = x′ y′ and we can easily check y′x′ = yx.

(If) We can represent w as both w = xyα = βθ(yx) and w = x′ y′α = βθ(y′x′). Without loss of generality, we can assume
|x′| < |x|, and then this implies that θ(x) = θ(x′)q and θ(y′) = qθ(y) for some q ∈ Σ+ . Therefore, x = θ(q)x′ and y′ = yθ(q).
Substituting these into xy = x′ y′ , we obtain xy = θ(q)x′ y = x′ yθ(q). Then Theorem 1 implies that v is not primitive. �

The next proposition now follows from Theorem 23 and Lemma 24.

Proposition 25. Let θ be an antimorphic involution on Σ∗ and u be a θ -pk-unbordered word. If w is a nonempty θ -pk-border of u2 ,
then the factorization of w into x and y such that u2 = xyα = βθ(yx) for some α,β ∈ Σ∗ is unique.

5. Discussion

In this paper, we proposed the notion of a θ -pseudoknot-unbordered word, where θ is a morphic or antimorphic in-
volution. This concept models DNA (or RNA) single strands that do not form some pseudoknot-like secondary structures.
This formulation is general enough to handle intermolecular structures similar to pseudoknots. In addition, this notion is
a proper generalization of the notion of θ -unbordered word, and thus of the classical notion of unbordered word. After
obtaining some basic properties of θ -bordered and θ -unbordered words, we investigated the question of whether or not
all powers of a θ -unbordered words remain θ -unbordered. The question was answered in the negative by providing coun-
terexamples. We also showed that, for a θ -unbordered word u, the fact that u is not primitive is a sufficient condition
for uk to be θ -pseudoknot-unbordered for all k � 1. This is the first step towards obtaining a condition that a language L
of θ -pseudoknot-unbordered words would have to satisfy in order for L+ to have the same property. Another direction of
research is to consider more realistic pseudoknot structures, i.e., to remove the restriction v1 = v2 = v4 = v5 = λ in the
general definition of the pseudoknot as a word of the form v1xv2 yv3θ(x)v4θ(y)v5. In particular, the conditions v2 = λ and
v4 = λ should be weakened, because pseudoknots occurring in real RNAs rarely satisfy these conditions due to steric effects.
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